martes, 24 de febrero de 2009

SENSORES GENERADORES

Se consideran sensores generadores aquellos que generan una señal eléctrica a partir de la magnitud que midan, sin necesidad de una alimentación eléctrica.Ofrecen una alternativa para medir muchas de las magnitudes ordinarias, sobre todo temperatura, fuerza y magnitudes afines. Pero, además, dado que se basa en efecto reversible, están relacionado con diversos tipos de accionadores o aplicaciones inversas en general. Es decir, pueden emplear para la generación de acciones no eléctricas a partir de señales eléctricas.

EFECTOS REVERSIBLE E IRRREVERSIBLE

EFECTO REVERSIBLE
Se define como aquel proceso que una vez ocurrido puede ser revertido a su estado inicial, sin producir cambios en el sistema o sus alrededores. En otras palabras el sistema y alrededores retornan a su estado original sin sufrir variaciones. Los procesos reversibles son idealizaciones de procesos verdaderos.

EFECTO IRREVERSIBLEEs aquél que supone la imposibilidad, o la dificultad extrema, de retornar a la situación anterior a la acción que lo produce.

EFECTO TERMOELECTRICO

La interacción entre un fenómeno eléctrico y térmico se conoce desde el siglo XIX, cuando Joule observó que la materia ofrece cierta resistencia al movimiento de los electrones, los cuales ceden energía cinética al entorno en los sucesivos choques. Esta energía proporcionada por los electrones se disipa en forma de calor. Sin embargo, no es éste el único fenómeno de interacción termoeléctrica. Otros efectos son los denominados Seebeck, Peltier y Thompson.
Tipos de efecto termoeléctrico:
a) Reversibles: Efecto Peltier.
Efecto Thompson.

b) Irreversibles: Efecto Joule.
Históricamente, fue Thomas J. Seebeck quien descubrió en 1822 que en un circuito de dos metales distintos A y B con dos uniones a diferentes temperaturas, aparece una corriente eléctrica.

Es decir hay una conversión de Energía Térmica a Energía Eléctrica o bien, si se abre el circuito, una fuerza (termo - electromotriz) que depende de los metales y de la diferencia de temperaturas entre las uniones. Al conjunto de estos dos metales distintos con una unión firme en un punto o una zona se le denomina Termopar.
La relación entre la fuerza termoelectromotriz (f.t.e.m.) denominada también EAB y la diferencia de temperatura entre las uniones (T), define el coeficiente de Seebeck (SAB).

donde SA y SB son la denominada Potencia Termoeléctrica absoluta de A y B.
En general SAB no es una constante. Esta depende de la temperatura T y suele crecer al crecer T.
Es importante anotar que mientras la corriente que circula por el circuito depende de la resistencia de los conductores, en cambio la ftem no depende de la resistividad, ni de la sección, ni distribución o gradiente de temperatura. Depende solo de la diferencia de temperaturas entre las uniones y de la naturaleza de los metales. Esta fuerza electromotriz se debe a los efectos Peltier y Thompson.

EFECTO PELTIER

Consiste en el calentamiento o enfriamiento de una unión entre dos metales distintos al pasar corriente por ella. Al invertir el sentido de la corriente se invierte también el sentido del flujo de calor. Es decir si antes una unión se calentaba (cedía calor), al cambiar el sentido de la corriente se enfría (absorbe calor), es decir, si primero se enfriaba ahora se calienta o viceversa.
Este efecto es reversible e independiente del contacto, es decir, de la forma y dimensiones de los conductores. Depende solo de su composición y de la temperatura de la unión.
La dependencia es lineal y viene descrita por el coeficiente de Peltier pAB que se define como el calor generado en la unión entre A y B por unidad de corriente que circula de B a A para una unión a temperatura T, y esta definido por:
El hecho de que el calor intercambiado por unidad de superficie de la unión sea proporcional a la corriente y no a su cuadrado, marca la diferencia respecto al efecto Joule. En este el calentamiento depende del cuadrado de la corriente y no cambia al hacerlo su dirección.
El efecto Peltier, es también independiente del origen de la corriente, que puede ser, incluso de origen termoeléctrico. En este caso las uniones alcanzan una temperatura distinta a la del ambiente y ello puede ser una fuente de errores.

EFECTO THOMPSON

El efecto Thompson consiste en la absorción o liberación de calor por parte de un conductor eléctrico homogéneo, con una distribución de temperaturas no homogénea, por el que circula una corriente [Biel J. G., 1997].El flujo neto de potencia calorífica por unidad de volumen, en un conductor de resistividad r, con un gradiente longitudinal de temperatura, por el que circula una densidad de corriente J será:
donde s es el coeficiente Thompson. El primer término corresponde al efecto Joule, irreversible, mientras que el segundo expresa el efecto Thompson, reversible.Desarrollando esta expresión para obtener la relación entre el coeficiente Thompson y Seebeck y teniendo en cuenta las ecuaciones que rigen los efectos Peltier y Seebeck, se llega a

Quedando para la unión:







EFECTO SEEBECK

Thomas J. Seebeck descubrió que en un circuito formado por dos metales distintos homogéneos, A y B, con dos uniones a diferente temperatura, T y T+∆T, aparece una corriente eléctrica J, o bien, si se abre el circuito una fuerza termoelectromotriz (f.t.e.m.) EAB que depende de los metales utilizados en la unión y de la diferencia de temperatura entre las dos uniones. Ver Figura
La relación entre la f.t.e.m., EAB, y la diferencia de temperaturas entre las uniones, T, define el coeficiente Seebeck, ∆AB [Rowe, D. M. 1995]:
αA(T) y αB(T) son respectivamente las potencias termoeléctricas absolutas de A y B y son características de cada metal. En general, αAB no es constante, sino que depende de la temperatura T.

TIPOS DE TERMOPARES

En las uniones de termopar interesa tener:
· Resistividad elevada sin requerir mucha masa
· Coeficiente de temperatura débil en la resistividad;
· Resistencia a la oxidación a temperaturas altas.
· Linealidad lo mayor posible.

Para lograr estas propiedades se emplean aleaciones especiales:
· Níquel (90)/Cromo(IO) -Cromel
· Cobre(57)1Niquel(43);
· Níquel(94 )1 Aluminio(2 )-Manganeso(3 )-Silicio( I) -Alumel

La protección frente al ambiente se logra mediante un encapsulado denominado Vaina que normalmente es acero inoxidable. La velocidad de respuesta y la robustez de la sonda vendrán afectadas por el espesor del encapsulado. En el cuadro siguiente se presentan las características de algunos de los termopares mas comunes y su designación de acuerdo con las normas ANSI.